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Abstract—Generalized integrated interleaved (GII) codes en-
able an enhanced error-correction over an array of interleaves
(component codes) within a single block. Error-correction perfor-
mance of GII codes can be further improved by utilizing the soft
received information. The existing Chase decoding of GII-BCH
codes can achieve a significant coding gain over the hard-decision
decoding, but at the cost of complexity. Meanwhile, the existing
theoretical characterization of its Chase decoding performance
remains complex and partially empirical. This paper introduces a
new theoretical characterization for Chase decoding performance
of GII-BCH codes. With this characterization, it further proposes
two new soft-decision decoding methods for GII-BCH codes,
including the enhanced Chase decoding (ECD) and the enhanced
concatenated Chase decoding (ECCD). They both identify the
decoding rounds that are more likely to declare a decoding
failure and prioritize allocating the flipped positions to those
rounds. In particular, the latter utilizes codewords of a linear
block code to cover the least reliable or the second least reliable
positions, further improving the error-correction performance
over the ECD. With a similar number of test-vectors, both the
ECD and ECCD can outperform the existing Chase decoding for
GII-BCH codes.

Index Terms—BCH codes, Chase decoding, generalized inte-
grated interleaved (GII) codes, theoretical performance analysis

I. INTRODUCTION

Advancements in communication technology have led to
new requirements for channel coding, which now encompass
not only high coding gains but also the need for high through-
put. Generalized integrated interleaved (GII) codes [1] are one
of the promising candidates that can meet these requirements.
An ([m, v], n) GII code consists of m interleaves and v nested
interleaves, each of length n. The interleaves can either be
Reed-Solomon (RS) codes or BCH codes. Decoding of the m
interleaves can be performed in parallel. If some interleaves
cannot be corrected, linear combinations of the m interleaves
can yield v stronger nested interleaves for correcting the
remaining errors. Therefore, GII codes can achieve both a
high throughput and a high decoding performance. Hard-
decision decoding of GII-BCH codes employs the Berlekamp-
Massey (BM) algorithm to decode the m interleaves [1] [2].
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Encoding and decoding of GII codes were proposed in [3]–
[7]. Theoretical performance of hard-decision decoding for GII
codes was first studied in [1] and later improved in [8].

In order to improve the decoding performance of GII codes,
soft received information should be applied to empower the
existing algebraic decoding, such as the generalized minimum
distance (GMD) decoding [9] and the Chase decoding [10].
The latter is a classic soft-decision decoding that achieves a
good trade-off between the error-correction performance and
complexity. For BCH codes, Chase decoding flips the η least
reliable positions and constructs 2η test-vectors to ensure all
errors that occur in these positions can be corrected. Perfor-
mance analysis of Chase decoding was studied in [11] [12].
Chase decoding of GII-BCH codes and its decoder architecture
were proposed in [13]. The decoding of GII-BCH codes can
be divided into v + 1 rounds. In decoding round-0, the m
interleaves are decoded in parallel. From decoding round-1
to round-v, the nested interleaves are computed to provide
more higher order syndromes. The error-correction capability
of interleaves vary over different rounds. The Chase decoding
of [13] achieves performance improvements by flipping differ-
ent numbers of the codeword symbols in different decoding
rounds. However, it requires that after flipping, the error-
correction capability of the current decoding round cannot be
greater than the following decoding round.

Chase decoding performance heavily relies on the formula-
tion of test-vectors [14] [15]. A symbol-level-stochastic Chase
algorithm (S-SCA) was proposed in [16], which is power-
efficient due to random generation of the most likely test-
vectors. With a certain number of test-vectors, the S-SCA can
achieve near maximum-likelihood (ML) performance. The use
of covering codes for selecting the effective test-vectors in
the iterative bounded distance decoding algorithms was first
proposed in [14], aiming to reduce the decoding complexity
while maintaining the decoding performance. Coded Chase
decoding [17] utilizes perfect codes, e.g., Hamming codes, as
the covering codes to assist the formulation of test-vectors. In
particular, it utilizes codewords of a perfect linear block code
as the flipping patterns. This results in the minimum Hamming
distance between the test-vectors becoming greater. Conse-
quently, with the same number of test-vectors, coded Chase
decoding may be able to correct errors over a wider band of
a codeword frame. As noted in [17], the conventional Chase
decoding and coded Chase decoding can be integrated. For the
least reliable positions that have a higher probability of being
erroneous, the conventional Chase decoding can be employed
to ensure all errors in these positions can be corrected. For the
second least reliable positions, coded Chase decoding can be
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employed to achieve a broader correction band. In this paper,
we call this decoding method concatenated Chase decoding.
Consequently, coded Chase decoding can be considered as
a special case of concatenated Chase decoding. It has been
shown that concatenated Chase decoding can further improve
the error-correction performance without any complexity cost
[17]. Concatenated Chase decoding is particularly effective
when the received information is heavily corrupted. There
is lack of theoretical characterization for concatenated Chase
decoding performance. This also subsequently limits our un-
derstanding on practical deployment of concatenated Chase
decoding.

This paper proposes a new theoretical characterization for
Chase decoding performance of GII-BCH codes. The more
computationally efficient closed form expressions for the de-
coding error probability are provided, which are also validated
by our decoding simulation. This paper further proposes the
enhanced Chase decoding (ECD) and the enhanced con-
catenated Chase decoding (ECCD) for GII-BCH codes. The
ECD and the ECCD can outperform the conventional Chase
decoding of GII-BCH codes. The major contributions of the
paper are as follows.

1) This paper proposes a new performance analysis tech-
nique for Chase decoding of BCH codes and further
extends it for coded Chase decoding and concatenated
Chase decoding of the codes. Based on this, the the-
oretical decoding performance analysis of coded Chase
decoding and concatenated Chase decoding of GII-BCH
codes is presented in Section III.

2) Based on the performance analysis in Section III, this
paper further introduces two new Chase decoding meth-
ods for GII-BCH codes, including the enhanced Chase
decoding (ECD) and the enhanced concatenated Chase
decoding (ECCD). They are designed by applying the
mentioned theoretical analysis on the decoding perfor-
mances. With a given SNR, both the ECD and the ECCD
can compute the error probability of each decoding
round. This enables them to better allocate the flipped
positions, resulting in significant performance gains.

The rest of this paper is organized as follows. Section II
introduces the prerequisites of this work, including the GII-
BCH codes, Chase decoding of GII-BCH codes and con-
catenated Chase decoding. Section III presents our theoretical
performance characterization for Chase decoding and concate-
nated Chase decoding of GII-BCH codes. The ECD and the
ECCD of GII-BCH codes are further proposed in Section
IV. Simulation results and comparison with several existing
Chase decoding for GII-BCH codes are presented in Section
V. Finally, Section VI concludes the paper.

II. PREREQUISITES

This section presents the prerequisites of GII-BCH codes,
Chase decoding of GII-BCH codes and concatenated Chase
decoding.

A. GII-BCH Codes
Let F2q denote the finite field of characteristics two

and order q, and σ denote its primitive element. An

([m, v] , n) GII-BCH codeword consists of m BCH
interleaves c0(x), c1(x), · · · , cm−1(x) ∈ C0(n, k0, t0).
Linear combinations of the m interleaves produce v
nested BCH interleaves c̃0(x) ∈ Cv(n, kv, tv), c̃1(x) ∈
Cv−1(n, kv−1, tv−1), · · · , c̃v−1(x) ∈ C1(n, k1, t1), where
k0 ≥ k1 ≥ · · · ≥ kv and tv ≥ · · · ≥ t1 ≥ t0. They can be
defined as

CG ≜ {c(x) = ([c0(x), c1(x), · · · , cm−1(x)]) , ci(x) ∈ C0,

0 ≤ i ≤ m− 1; c̃j(x) =

m−1∑
i=0

α(xij)ci(x) ∈ Cv−j , 0 ≤ j < v},

(1)
where α(xµ) is defined by the primitive polynomial ψ(x) of
F2q through

α(xµ) = xµ mod ψ(x), (2)

where µ ∈ N. Thus, GII-BCH code is of length N = mn and
dimension K = (m− v)k0 + k1 + k2 + · · ·+ kv .

For an ([m, v] , n) GII-BCH code, decoding can be divided
into v+1 rounds. In decoding round-b, where 0 ≤ b ≤ v, each
interleave can correct tb = ⌊(γb − 1)/2⌋ errors, where γb is
the designed minimum distance of Cb. The hard-decision error-
correction capability is t = [t0, t1, · · · , tv] [1]. Hard-decision
decoding of GII-BCH codes employs the BM algorithm [18] to
decode the m interleaves. The v nested interleaves can provide
the higher order syndromes for the remaining interleaves.
Let yi(x) denote the i-th received word of the transmitted
codeword ci(x) ∈ C0. Syndromes of yi(x) are computed as

Sj
i = yi(σ

j+1), 0 ≤ j < 2t0. (3)

In decoding round-0, i.e., b = 0, the error locator polyno-
mial Λ(x) for yi(x) can be computed by the BM algorithm.
Inverse of its roots indicate the error locations. For binary
BCH codes, decoding is completed once the error locations
are determined. At this round, the BM algorithm can correct
up to t0 errors in the received word of each interleave. If all
interleaves are correctly decoded, the decoding will terminate.
Otherwise, the nested structure needs to be applied through
computing the higher order syndromes. They help decode the
remaining interleaves. Note that if the number of the remaining
interleaves exceeds v, decoding will also terminate but with a
failure.

In decoding round-b and b ̸= 0, there are v−b+1 interleaves
that have not been successfully decoded. Their corresponding
received words are denoted as yl0(x), yl1(x), · · · , ylv−b

(x).
Let L = {l0, l1, · · · , lv−b} denote the index set of the v−b+1
interleaves. Hence, its complementary set Lc denotes the
interleaves that have been successfully decoded. The v− b+1
nested interleaves can be computed as

ỹi(x) =
∑
j∈L

α(xij)yj(x) +
∑
j∈Lc

α(xij)cj(x), (4)

where i = 0, 1, · · · , v− b. Syndromes of the nested interleave
ỹi(x) can be computed as

S̃j
i = ỹi(σ

j+1), 0 ≤ j < 2tb. (5)

The higher order syndromes of the remaining interleaves can
be computed through syndromes of the nested interleaves by
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 , (6)

(6), where j = 2t0, 2t0 + 1, · · · , 2tb − 1. For the v − b + 1
remaining interleaves, the number of syndromes has increased
to 2tb. This enables each interleave to correct up to tb errors
in decoding round-b. If the number of successfully decoded
interleaves does not increase in this round, the decoding will
also terminate again with a failure. Otherwise, more higher
order syndromes can be computed through (6) by entering
into the next decoding round, thereby improving the error-
correction capability of the remaining interleaves. This process
is repeated until all interleaves have been decoded, or a
decoding failure is declared.

B. Chase Decoding of GII-BCH Codes

By utilizing the soft received information, decoding perfor-
mance of GII-BCH codes can be further improved. In its Chase
decoding [13], if hard-decision decoding fails in decoding
round-b, ηb least reliable positions (LRPs) will be identified in
the remaining interleaves. Subsequently, 2ηb test-vectors will
be constructed by flipping the decisions at these positions for
each of them. By decoding 2ηb test-vectors, each interleave can
correct up to ηb + tb errors in the decoding round. Through
Chase decoding, the number of remaining interleaves may
decrease, which will lead to the next decoding round. When
b ̸= 0, the nested interleave and higher order syndromes should
be recomputed for each test-vector. Let ηb denote the number
of flipped positions at round-b, then the flipping vector can be
denoted as η = [η0, η1, · · · , ηv]. The decoding algorithm is
described as in Algorithm 1.

It can be seen that η determines the error-correction ca-
pability and complexity for GII-BCH codes. Therefore, de-
signing η under a certain complexity constraint is critical
for Chase decoding of GII-BCH codes. In the existing Chase
decoding of GII-BCH codes [13], entries of η need to satisfy
tb + ηb < tb+1. However, this limits the Chase decoding
performance, especially under a certain complexity constraint.
In our proposed Chase decoding, this conditions is lifted,
leading to an enhanced decoding performance.

C. Concatenated Chase Decoding

In the conventional Chase decoding of BCH codes, all 2η

test-vectors will be decoded. Despite decoding multiple test-
vectors, their decoding outputs are often the same. There-
fore, forming an effective set of test-vectors is important
for achieving a good decoding performance-complexity trade-
off. The use of covering codes in forming the test-vectors
was first proposed in [14] for soft-decision bounded distance
decoding algorithms. Coded Chase Kötter-Vardy decoding
[17] chooses the codewords of a perfect covering code as
the Chase flipping patterns. Let Cc(η, τ) denote a perfect

Algorithm 1: Chase Decoding of GII-BCH Codes
Input: y0(x), y1(x), · · · , ym−1(x),

η = [η0, η1, · · · , ηv];
Output: c0(x), c1(x), · · · , cm−1(x);

1 Initialize L = ∅, b = 0;
2 For i = 0, 1, · · · ,m− 1 do
3 Decode yi(x) by BM algorithm;
4 If the decoding declares a failure then
5 L = L ∪ {i} ;
6 Else
7 Return ci(x);
8 If |L| > v then
9 For i ∈ L do

10 Construct 2η0 test-vectors and decode them;
11 If the decoding declares a success then
12 L = L\{i} and return ci(x);
13 If |L| > v then
14 Declare a decoding failure;
15 Else
16 b = |L| ;
17 While L ̸= ∅ do
18 For i ∈ L do
19 Compute the higher order syndromes of

yi(x) as in (6) and decode it;
20 If decoding of yi(x) declares a success

then
21 L = L\{i} and return ci(x);
22 If |L| does not decrease then
23 For i ∈ L do
24 Construct 2ηb test-vectors and decode

them;
25 If decoding of yi(x) declares a success

then
26 L = L\{i} and return ci(x);
27 If |L| does not decrease then
28 Declare a decoding failure.

sphere-packing code with length η and dimension τ . Theo-
retical decoding performance of utilizing the codewords of a
perfect code as the Chase flipping patterns can be analyzed
more straightforwardly. Coded Chase decoding utilizes each
codeword of Cc(η, τ) as the flipping pattern which can cover
the η LRPs. There are 2τ test-vectors, covering η LRPs.
When τ = η, the conventional Chase decoding can be
viewed as a special case of coded Chase decoding. Coded
Chase decoding can increase the minimum Hamming distance
between test-vectors, enhancing the error-correction capability.
Let dmin (dmin ≥ 1) denote the minimum Hamming distance of

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2025.3582732

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 04,2025 at 07:58:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED 4

TABLE I
FLIPPING PATTERNS OF CHASE DECODING WITH FOUR FLIPPED

POSITIONS AND THOSE OF CODED CHASE DECODING USING THE (7, 4)
HAMMING CODE.

Chase decoding
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Coded Chase decoding
0000000
0001101
0010111
0011010
0100011
0101110
0110100
0111001
1000110
1001011
1010001
1011100
1100101
1101000
1110010
1111111

Cc(η, τ). For the conventional Chase decoding, the minimum
Hamming distance between the test-vectors is one. For coded
Chase decoding that employs Cc(η, τ) as the covering code,
this will be increased to dmin. Note that when there is a severe
noise interference, the minimum Hamming distance between a
received codeword and a valid codeword tends to be relatively
large. Table I illustrates all the flipping patterns of a Chase
decoding with four flipped positions and those of a coded
Chase decoding using the (7, 4) Hamming code to cover seven
LRPs. It can be seen that the Hamming distance between the
test-vectors of coded Chase decoding is greater, spanning a
wider error-correction band.

However, it should be aware that coded Chase decoding
can only be employed for enhancing the conventional Chase
decoding that flips τ positions. Moreover, applying coded
Chase decoding is possible to overkill a received word, failing
an otherwise successful decoding. For this, the conventional
Chase decoding and coded Chase decoding can be integrated.
We call this method concatenated Chase decoding [17]. In
concatenated Chase decoding, the conventional Chase de-
coding is employed for flipping the η̃ LRPs, while coded
Chase decoding is employed for flipping the η secondary least
reliable positions (SLRPs). This combined flipping approach
appears to be effective for enhancing the Chase decoding
performance [17]. Under such a setup, coded Chase decoding
can be considered as a special case of concatenated Chase
decoding with η̃ = 0.

Concatenated Chase decoding can also be employed to
decode GII-BCH codes. Let us assume that each interleave can
correct up to tb+ τ + η̃ errors in decoding round-b by flipping
τ + η̃ positions. If a good sphere-packing code Cc(η, τ) is
utilized to cover the η SLRPs, each interleave can correct up
to tb+η+η̃ errors. It corrects more errors than the conventional
Chase decoding.

III. CHASE DECODING PERFORMANCE ANALYSIS

This section proposes a new theoretical decoding perfor-
mance characterization for Chase decoding of BCH codes and
further extends it for coded Chase decoding and concatenated
Chase decoding of the codes. Based on this, theoretical decod-
ing performance characterization of coded Chase decoding and
concatenated Chase decoding of GII-BCH codes is proposed.

A. Chase Decoding of BCH Codes

For an (n, k, t) BCH code (denoted as C(n, k, t)) with η
flipped positions, the error probability of Chase decoding can
be characterized as the sum of the probabilities of two types
of decoding failures. They include when the number of errors
exceeds t+η, and when the number of errors is between t+1
and t + η (but the decoding still fails). To characterize the
latter, the existing method of [11] exhibits double integrals,
which is computationally challenging.

This paper proposes a new method for the pursuit through
simplifying computation while ensuring accuracy. Some of the
ordered statistics decoding (OSD) performance characteriza-
tion techniques of [19] are applied. For a Chase decoding
that flips the η LRPs, all the errors in the η LRPs can
be corrected. Error probability of Chase decoding can be
characterized as the probability that the number of errors in
the most reliable positions (MRPs) exceeds t. Let us assume
the codeword is transmitted over the additive white Gaussian
noise (AWGN) channel together with the binary phase shift
keying (BPSK) modulation, where noise variance is N0/2
and N0 is the single side-band power spectrum density. The
signal-to-noise ratio (SNR) is defined as Eb/N0, where Eb
is the transmitted energy per information bit. For simplicity,
we assume an all-zero codeword of C(n, k, t) is transmitted.
Let r = (r1, r2, · · · , rn) ∈ Rn denote the channel output and
α = (α1, α2, · · · , αn) = (|r1|, |r2|, · · · , |rn|) ∈ Rn denote its
reliability vector. Let Ru and Au further denote the random
variables representing ru and αu, respectively. The pdf of Ru

and Au are given by

fR(r) =
1√
πN0

e−
(r−1)2

N0 (7)

and

fA(α) =


0, if α < 0;

e−
(α+1)2

N0

√
πN0

+
e−

(α−1)2

N0

√
πN0

, if α ≥ 0,
(8)

respectively. Given the Q-function defined as

Q(x) =
1√
2π

∫ ∞

x

e−
z2

2 dz, (9)

the cdf of Au can be derived as

FA(α) =


0, if α < 0;

1−Q

(
α+ 1√
N0/2

)
−Q

(
α− 1√
N0/2

)
, if α ≥ 0.

(10)
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Let α̇ = (α̇1, α̇2, · · · , α̇n) denote a sorted reliability vector,
where α̇1 ≥ α̇2 ≥ · · · ≥ α̇n. Let Ȧu further denote the random
variable representing α̇u. Similar to (8), the pdf of Ȧu can be
derived as

fȦu
(α̇u) =

n!

(u− 1)!(n− u)!
· (1− FA(α̇u))

u−1

·FA(α̇u)
n−ufA(α̇u).

(11)

For a position with its reliability value ranging in [β, α], its
error probability p(α, β) can be derived as

p(α, β) =
Q(−2α−2√

2N0
)−Q(−2β−2√

2N0
)

Q(−2α−2√
2N0

)−Q(−2β−2√
2N0

) +Q( 2α−2√
2N0

)−Q( 2β−2√
2N0

)
.

(12)
For Chase decoding that flips the η LRPs, the received word
can be categorized into the n − η MRPs and the η LRPs,
respectively. The probability of having ϵ errors in the MRPs
can be derived as

pMRPs(η, ϵ) =

∫ ∞

0

(
n− η
ϵ

)
p (∞, y)ϵ (1− p (∞, y))n−η−ϵ

· fȦn−η+1
(y) dy.

(13)

Errors in the LRPs can be corrected by Chase decoding. There-
fore, error probability of Chase decoding can be characterized
as the event in which the number of errors in the MRPs
exceeds the error-correction capability t, which is

pChase(t, η) = 1−
t∑

ϵ=0

pMRPs(η, ϵ). (14)

Compared with the method of [11], the theoretical character-
ization of (14) appears to be more computationally efficient.
We will later show it is also accurate.

B. Coded Chase Decoding of BCH Codes

Assume that a perfect sphere-packing code Cc(η, τ) is
employed to cover the η LRPs in coded Chase decoding of
an (n, k, t) BCH code. Let fµ and eν denote the flipping
pattern and the error pattern in the LRPs, respectively, where
1 ≤ µ ≤ 2τ and 1 ≤ ν ≤ 2η . The number of flipping patterns
is smaller than that of error patterns. There are certain error
patterns that cannot be handled by the decoding. For such
error patterns, errors may still remain, or extra errors may
occur after the flipping. Both of them are referred to as the
erroneous flips. Let us define ξ(eν , Cc(η, τ)) as the number of
erroneous flips as

ξ(eν , Cc(η, τ)) = min{weight(eν ⊕ fµ),fµ ∈ Cc,
µ = 1, 2, · · · , 2τ )},

(15)

where weight(eν⊕fµ) denotes the number of non-zero entries
in eν ⊕ fµ. For an error pattern eν , if ξ(eν , Cc(η, τ)) = 0,
it can be corrected by coded Chase decoding. With such a
definition, Chase decoding can be considered as a special
case of coded Chase decoding, in which all error patterns
in the LRPs satisfy ξ(eν , Cc(η, τ)) = 0. Therefore, the error
probability of Chase decoding depends only on the number
of errors in the MRPs. For coded Chase decoding, it remains

that the number of flipping patterns is less than that of error
patterns. This implies that for certain error patterns, there is
no flipping pattern that can completely match them. For those
error patterns, ξ(eν , Cc(η, τ)) ̸= 0.

Lemma 1. When a perfect covering code Cc(η, τ) that can
correct at most ω errors is used to cover the η LRPs, the error
pattern eν should satisfy ξ(eν , Cc(η, τ)) ≤ ω.

Proof: For a perfect covering code Cc(η, τ) that can cor-
rect at most ω errors, all length-n binary vectors are contained
in the Hamming sphere of a valid codeword. Each vector can
be regarded as an error pattern and each valid codeword of
Cc(η, τ) can be regarded as a flipping pattern of coded Chase
decoding. Hence, the Hamming distance between each error
pattern and its nearest flipping pattern is not greater than ω,
i.e., ξ(eν , Cc(η, τ)) ≤ ω.

Based on Lemma 1, it can be seen that there are at most
ω erroneous flips occurring in the LRPs. The probability of
having ϵ′ (0 ≤ ϵ′ ≤ ω) erroneous flips in the LRPs is

pLRPs(η, ϵ
′) =

∑
ν

pl(eν , η) · 1[ϵ′,ϵ′](ξ(eν , Cc(η, τ))), (16)

where pl(eν , η) is the probability of an error pattern eν =
(en−η+1, en−η+2, · · · , en) occurring in the LRPs [19] and it
is defined as

pl(eν , η) =

∫ ∞

0

· · ·︸ ︷︷ ︸
η−weight(eν)

∫ 0

−∞
· · ·︸ ︷︷ ︸

weight(eν)

(
n!

(n− η)!
FA (xn−η+1)

n−η

·
n∏

z=n−η+1

fR (xz) ·
n∏

z=n−η+2

1[0,|xz−1|] (|xz|)

)
·

∏
n−η<z<n, ez=0

dxz
∏

n−η<z<n, ez ̸=0

dxz.

(17)

and function 1[a,b](x) is defined as

1[a,b] (x) =

{
1, if x ∈ [a, b] ;
0, if x /∈ [a, b] .

(18)

Error probability of coded Chase decoding can be charac-
terized as probability of the event where the total number of
errors in the MRPs and erroneous flips in the LRPs exceeds
the error-correction capability t. That says

pCoded(t, η) =

n∑
ϵ=t+1

pMRPs(η, ϵ)

+

ω∑
ϵ=1

(
pMRPs(η, t− ϵ+ 1) ·

ω∑
ϵ′=ϵ

pLRPs(η, ϵ
′)

)
.

(19)

The following Example 1 demonstrates the coded Chase
decoding performance characterization.

Example 1. For a (63, 18) BCH code with an error-
correction capability t = 10, the (7, 4) Hamming code
CHam(7, 4) is employed to cover the seven LRPs. Among these
LRPs, there are in total 27 error patterns. The (7, 4) Hamming
code is a perfect code with a minimum Hamming distance of
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Fig. 1. Error-correction performance of Chase decoding and coded Chase
decoding for the (63, 18) BCH code.

three. Based on Lemma 1, there is at most one erroneous flip
occurring in the LRPs. Excluding the 16 error patterns that are
the Hamming codewords, the remaining error patterns have an
erroneous flip. That says

pLRPs(7, 1) =
∑
ν

pl(eν , 7) · 1[1,1](ξ(eν , CHam(7, 4)))

=
∑

ev ̸=fµ

pl(eν , 7),

where fµ ∈ CHam(7, 4). The decoding error probability can be
calculated by (19) as

pCoded(10, 7) =

63∑
ϵ=11

pMRPs(7, ϵ) + pMRPs(7, 10)pLRPs(7, 1).

Fig. 1 shows the simulation results and the theoretical char-
acterizations of Chase decoding and coded Chase decoding
of the (63, 18) BCH code. The decoding performances (as in
frame error rate (FER)) were obtained over the AWGN channel
using BPSK. It can be seen that with the same number of test-
vectors, coded Chase decoding outperforms the conventional
Chase decoding. Coded Chase decoding covers seven LRPs,
correcting up to seven errors. Moreover, Fig.1 shows our the-
oretical characterizations match well with simulation results.

C. Concatenated Chase Decoding of BCH Codes
Concatenated Chase decoding performance can be analyzed

similarly. For concatenated Chase decoding, the received word
can be categorized into the n− η− η̃ MRPs, the η̃ LRPs and
the η SLRPs.

In concatenated Chase decoding, Chase decoding is em-
ployed to cover the η̃ LRPs, while coded Chase decoding is
employed to cover the η SLRPs. Errors in the LRPs can be
completely corrected, while the erroneous flips occur in the
SLRPs. The probability of having ϵ′ (0 ≤ ϵ′ ≤ ω) erroneous
flips in the SLRPs can be derived as

pSLRPs(η, η̃, ϵ
′) =

∑
ν

pl(ẽν , η + η̃) · 1[ϵ′,ϵ′](E(ẽν , Cc(η, τ))),

(20)
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Fig. 2. Error-correction performance of Chase decoding and concatenated
Chase decoding for the (63, 18) BCH code.

where pl(ẽν , η + η̃) is the probability of an error pattern
ẽν = (ẽn−η−η̃+1, ẽn−η−η̃+2, · · · , ẽn−η̃) occurring in the
SLRPs. Error probability of concatenated Chase decoding can
be derived as

pConc(t, η, η̃) =

n∑
ϵ=t+1

pMRPs(η + η̃, ϵ)

+

ω∑
ϵ=1

(
pMRPs(η + η̃, t− ϵ+ 1) ·

ω∑
ϵ′=ϵ

pSLRPs(η, η̃, ϵ
′)

)
.

(21)

The following Example 2 demonstrates this concatenated
Chase decoding performance characterization.

Example 2. For a (63, 18) BCH code with an error-
correction capability t = 10, Chase decoding is employed to
cover the four LRPs, while coded Chase decoding is employed
to cover the seven SLRPs by the use of the (7, 4) Hamming
code. The decoding error probability can be calculated by (21)
as

pConc(10, 7, 4) =

63∑
ϵ=11

pMRPs(11, ϵ)

+ pMRPs(11, 10) · pSLRPs(7, 4, 1).

Fig. 2 compares our simulation results with the theoretical
characterizations of Chase decoding and concatenated Chase
decoding for the (63, 18) BCH code. It can be seen that
the concatenated Chase decoding cannot only enhance error-
correction performance but also offer significant flexibility in
its application. Coded Chase decoding can only be applied
when flipping τ positions. However, concatenated Chase de-
coding can be applied when at least τ positions need to be
flipped. It can be seen that with the same number of test-
vectors, concatenated Chase decoding also outperforms Chase
decoding, due to its capability of covering more unreliable po-
sitions and hence enhancing the correction ability. Again, the
theoretical characterizations also match well with simulation
results.
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Pfb =

{∑m
i=v+1

(
m
i

)
pChase(t0, η0)

i · (1− pChase(t0, η0))
m−i

, if b = 0;(
m

v−b+1

)
pChase(tb, ηb)

v−b+1 · (1− pChase(tb−1, ηb−1))
m−(v−b+1)

, if 1 ≤ b ≤ v.
(25)
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Fig. 3. Error-correction performance of Chase decoding and concatenated
Chase decoding for the ([4, 2], 31) GII-BCH code.

D. Chase Decoding of GII-BCH Codes

With the theoretical Chase decoding performance charac-
terization for BCH codes in Section III-A, the hard-decision
decoding error probability for GII-BCH code can be further
defined as [13]

Pf =

v∑
b=0

Pfb , (22)

where Pfb is the error probability of decoding round-b. It is
defined as [8]

Pfb =

{∑m
i=v+1

(
m
i

)
pi0(1− p0)

m−i
, if b = 0;(

m
v−b+1

)
pv−b+1
b (1− pb−1)

m−(v−b+1)
, if 1 ≤ b ≤ v,

(23)
where pb is the error probability of an interleave in de-
coding round-b. Given p as the decoder input bit error
rate, the probability of an interleave having w errors is
ϕw =

(
n
w

)
pw(1− p)n−w. For hard-decision decoding, pb =∑n

w=tb+1 ϕw. For Chase decoding, pb can be determined by
(14). It can then be substituted into (23) and (22) successively
in yielding the theoretical Chase decoding error probability for
the GII-BCH codes. Therefore,

pb = pChase(tb, ηb), (24)

where 0 ≤ b ≤ v. Furthermore, Pfb of (23) can be
recharacterized as in (25).

E. Concatenated Chase Decoding of GII-BCH Codes

Similarly, determining pb by (19) or (21) can yield the
concatenated Chase decoding theoretical error probability of
the GII-BCH codes. Assume that a perfect sphere-packing
code Cc(η, τ) is employed in decoding rounds b∗1, b

∗
2, · · · ,

where we denote B∗ = {b∗1, b∗2, · · · }. Note that coded Chase
decoding can be considered as a special case of concatenated
Chase decoding as when η̃ = 0. Therefore,

pCoded(t, η) = pConc(t, η, 0). (26)

For decoding round-0, its error probability only depends on
the decoding error probability of the interleaves. Whether
concatenated Chase decoding is applied in decoding round-
0 determines the calculation method for Pf0 . That says

Pf0 =


∑m

i=v+1

(
m
i

)
pChase(t0, η0)

i(1− pChase(t0, η0))
m−i

,

if 0 /∈ B;∑m
i=v+1

(
m
i

)
pConc(t0, η, η0)

i(1− pConc(t0, η, η0))
m−i

,

if 0 ∈ B.
(27a)

When b ≥ 1, its error probability depends on the decoding
error probabilities of interleaves in both the current and the
previous rounds. Therefore, Pfb can be derived as (27b).

Fig. 3 compares our simulation results with the theoretical
characterizations of Chase decoding and concatenated Chase
decoding of the ([4, 2], 31) GII-BCH code. Its dimension is
K = 49 and the error-correction capability is t = [3, 5, 7].
Concatenated Chase decoding employs the (7, 4) Hamming
code as covering code. Fig. 3 shows that theoretical character-
izations of Chase decoding and concatenated Chase decoding
for GII-BCH codes also match well with the simulation results.

IV. ENHANCED CHASE DECODING OF GII-BCH CODES

Based on the mentioned performance characterization in
Section III, this section further introduces two new Chase
decoding methods for GII-BCH codes, including the enhanced
Chase decoding (ECD) and the enhanced concatenated Chase
decoding (ECCD). Armed with the above analysis, we are
able to compute the error probability of each decoding round.
This helps better allocate the flipped positions, resulting in
significant performance gains.

A. Enhanced Chase Decoding of GII-BCH Codes

For an ([m, v] , n) GII-BCH code whose hard-decision
error-correction capability is t = [t0, t1, · · · , tv], composition
of the flipping vector η determines the decoding performance
and complexity. Therefore, entries of η can be designed
under a certain complexity constraint. Intuitively, given the
maximum number of test-vectors, the flipped positions should
be allocated to the decoding rounds that are more likely
to declare a decoding failure, so that the Chase decoding
performance can be enhanced. Let Pfb = {Pf0 , Pf1 , · · · , Pfv}
denote the set of the error probability of all decoding rounds,
where it entries can be determined by (25). Further let T
denote the maximum number of test-vectors as

T = m2η0 + v2η1 + (v − 1)2η2 + · · ·+ 2ηv . (28)
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Pfb =


(

m
v−b+1

)
pChase(tb, ηb)

v−b+1 · (1− pChase(tb−1, ηb−1))
m−(v−b+1)

, if b /∈ B, b− 1 /∈ B;(
m

v−b+1

)
pChase(tb, ηb)

v−b+1 · (1− pConc(tb−1, η, ηb−1))
m−(v−b+1)

, if b /∈ B, b− 1 ∈ B;(
m

v−b+1

)
pConc(tb, η, ηb)

v−b+1 · (1− pChase(tb−1, ηb−1))
m−(v−b+1)

, if b ∈ B, b− 1 /∈ B;(
m

v−b+1

)
pConc(tb, η, ηb)

v−b+1 · (1− pConc(tb−1, η, ηb−1))
m−(v−b+1)

, if b ∈ B, b− 1 ∈ B.

(27b)

Let TThr denote the maximum number of test-vectors, which
is designed by considering the decoding complexity budget.
Based on (22), it can be seen that the Chase decoding error
probability of the GII-BCH codes is the sum of the error
probability of each decoding round. Based on both (23) and
(25), it can be seen that when b = 0, Pfb only depends on pb.
When 1 ≤ b ≤ v, Pfb depends on both pb and pb−1. Based
on the calculations in (22), (23) and (25), it can be observed
that when the FER of GII-BCH codes approaches 10−5 and
m < 10, (1− pb−1)

m−(v−b+1) can be can be approximated
as 1, and Pfb can be approximated as

Pfb ≈
(

m

v − b+ 1

)
pv−b+1
b . (29)

Therefore, enhancing the error-correction capability of each
interleave in decoding round-b can lead to decoding perfor-
mance enhancement of the GII-BCH codes.

Let Pfbmax
denote the maximum value of Pfb , i.e.,

Pfbmax
= max{Pfbi

|i = 0, 1, · · · , v}. (30)

Let ηbmax further denote the number of flipped positions in
decoding round-bmax. Based on the above definition, it can
be seen that among all decoding rounds, round-bmax is most
likely to declare a decoding failure. A flipped position should
be assigned to it. The maximum number of test-vectors T
is then updated based on (28). If T ≤ TThr, Pfb and Pfbmax

will be determined again as in (25) and (30), respectively.
Subsequently, the next flipped position can be assigned and
T is updated again. If T > TThr, this flipped position will be
relocated. In this case, the error probability set Pfb is updated
as

Pfb = Pfb\{Pfbmax
}. (31)

Afterwards, Pfbmax
will be determined from the new set as in

(30), identifying the decoding round that yields the second
highest error probability. The flipped position is assigned to
it and T is updated as in (28). The above process terminates
once the error probability set Pfb is empty. The flipping vector
η is now formed, and the conventional Chase decoding, i.e,
Algorithm 1, can be applied to decode the received words. The
above described enhanced Chase decoding (ECD) is summa-
rized as in Algorithm 2. Note that calculation of the flipping
vector η, i.e., lines 2 to 13, is performed offline. Therefore,
the actual decoding complexity and latency remain the same
as the conventional Chase decoding. Decoding complexity of a
test-vector using BM algorithm is O(n2). Therefore, decoding
complexity of the ECD in the worst case can be derived
as O(TThrn

2), which is the same as the conventional Chase
decoding.

The following Example 3 demonstrates the calculation of η

Algorithm 2: Enhanced Chase Decoding (ECD)
Input: y0(x), y1(x), · · · , ym−1(x), TThr;
Output: c0(x), c1(x), · · · , cm−1(x);

1 Initialize T = m+ v + v − 1 + · · ·+ 1 and
η = [0, 0, · · · , 0];

2 While T ≤ TThr do
3 Compute Pfb = {Pf0 , Pf1 , · · · , Pfv} as in (25);
4 Determine Pfbmax

as in (30);
5 ηbmax ← ηbmax + 1;
6 Compute T as in (28);
7 If T > TThr then
8 ηbmax ← ηbmax − 1;
9 Compute T as in (28);

10 Update Pfb as in (31);
11 If Pfb = ∅ then
12 break;
13 Return to line 4;
14 Employ the Algorithm 1 to decode

y0(x), y1(x), · · · , ym−1(x) with the newly formed η.

in the ECD.
Example 3. For a ([6, 3], 63) GII-BCH code with N = 378

and K = 116, its hard-decision error-correction capability is
t = [7, 10, 11, 13]. Let TThr = 40 and theoretical decoding
error probabilities are computed at the SNR of 5.5 dB, the
flipping vector η can be determined through Algorithm 2
with its intermediate calculations elaborated as follows. Let us
initialize η = [0, 0, 0, 0] and T = 12. Pfb can be determined
as

Pfb = {Pf0 = 3.59× 10−4, Pf1 = 1.08× 10−6,

Pf2 = 2.41× 10−5, Pf3 = 5.69× 10−4}.

Hence, bmax = 3. A flipped position is assigned to decoding
round-3, η = [0, 0, 0, 1] and T = 13. Afterwards, Pfb is
updated as

Pfb = {Pf0 = 3.59× 10−4, Pf1 = 1.08× 10−6,

Pf2 = 2.41× 10−5, Pf3 = 2.29× 10−4}.

Hence, bmax = 0. A flipped position is assigned to decoding
round-0, η = [1, 0, 0, 1] and T = 19. Repeat the above process
until η = [2, 0, 0, 3], T = 37, and

Pfb = {Pf0 = 8.45× 10−6, Pf1 = 1.25× 10−6,

Pf2 = 2.41× 10−5, Pf3 = 3.43× 10−5}.

Hence, bmax = 3. A flipped position is assigned to decoding
round-3. After this allocation, T = 45 > TThr. Therefore, this
position should be relocated. Based on the above decoding
error probability set Pfb , decoding round-2 has the second
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highest error probability. Therefore, let η = [2, 0, 1, 3] and
T = 39. At this point, further allocating a flipped position
to any decoding round will cause T > TThr. Therefore, η =
[2, 0, 1, 3].

B. Enhanced Concatenated Chase Decoding of GII-BCH
Codes

With the same number of test-vectors, concatenated Chase
decoding can achieve better performance than the conventional
Chase decoding. It can also be employed to decode GII-
BCH codes. The application of concatenated Chase decoding
can achieve higher performance gains without increasing the
number of test-vectors. Concatenated Chase decoding is able
to correct more errors of interleaves in the decoding rounds
which are more likely to declare a decoding failure. However,
it is not necessary to employ concatenated Chase decoding
in every decoding round. Concatenated Chase decoding that
employs the covering code Cc(η, τ) can only be used in the
decoding rounds that have been allocated at least τ flipped
positions. For the rest decoding rounds, the conventional
Chase decoding is employed. For a decoding round in which
concatenated Chase decoding is employed, let P̃fb denote
the error probability of decoding round-b. Let λ denote the
performance gain yielded by concatenated Chase decoding as

λ =
Pfb − P̃fb

Pfb

. (32)

It represents the extent of the performance improvement over
the conventional Chase decoding. In particular, if λ > 0,
concatenated Chase decoding in this decoding round can
improve performance, and its improvement effect is reflected
by the value. In contrast, if λ < 0, concatenated Chase
decoding does not lead to an improvement. This enables us
to decide whether to employ concatenated Chase decoding.
In our work, concatenated Chase decoding is employed only
when λ > 0.1. Let κb denote the flag that whether to employ
concatenated Chase decoding in decoding round-b. If κb = 1,
the concatenated can be employed in this round. Let we denote
κ = [κ0, κ1, · · · , κv]. After allocating a flipped position, each
decoding round will evaluate λ in order to determine whether
to employ the concatenated Chase decoding. The remaining
steps are the same as those of Algorithm 2. Recalling the
1[a,b](x) function that is defined as in (18), in the ECCD, T
should be calculated as

T =m
(
2η01[0,0](κ0) + 2η0−η+τ1[1,1](κ0)

)
+ v

(
2η11[0,0](κ1) + 2η1−η+τ1[1,1](κ1)

)
+ · · ·+

(
2ηv1[0,0](κv) + 2ηv−η+τ1[1,1](κv)

)
.

(33)

The above described process is summarized as in Algorithm 3.
Similar to the ECD, the calculations of η and κ, i.e., lines 2 to
25, are also performed offline. Overall, decoding complexity
of the ECCD in the worst case is O(TThrn

2), which is the
same as the ECD and the conventional Chase decoding.

In order to better illustrate its key computations, the follow-
ing Example 4 demonstrates the calculations of η and κ in
the ECCD.

Algorithm 3: Enhanced Concatenated Chase Decoding
(ECCD)
Input: y0(x), y1(x), · · · , ym−1(x), TThr and C(η, τ) ;
Output: c0(x), c1(x), · · · , cm−1(x) ;

1 Initialize T = m+ v + v − 1 + · · ·+ 1,
η = [0, 0, · · · , 0], κ = [0, 0, · · · , 0] ;

2 While T ≤ TThr do
3 Compute Pfb = {Pf0 , Pf1 , · · · , Pfv} as in (25) ;
4 Determine Pfbmax

as in (30) ;
5 ηbmax ← ηbmax + 1 ;
6 Compute T as in (33) ;
7 If T > TThr then
8 ηbmax ← ηbmax − 1 ;
9 Compute T as in (33) ;

10 Update Pfb as in (31) ;
11 If Pfb = ∅ then
12 break ;
13 Return to line 4 ;
14 For b = 0, 1, · · · , v do
15 If ηb ≥ τ then
16 employ Cc(η, τ) in decoding round-b ;
17 If ηb = τ then
18 pb ← pCoded(tb, η) ;
19 Else
20 pb ← pConc(tb, η, ηb − η) ;
21 Compute P̃fb as in (23) ;

22 If λ =
Pfb

−P̃fb

Pfb

> 0.1 and κb = 0 then
23 Employ the concatenated Chase

decoding in decoding round-b ;
24 κb = 1 ;
25 ηb = ηb − τ + η ;
26 Employ the Algorithm 1 to decode

y0(x), y1(x), · · · , ym−1(x) with the newly formed η
and κ.
// For the decoding rounds that κ = 1,
concatenated Chase decoding should be
employed.

Example 4. For a ([6, 3], 127) GII-BCH code with N = 762
and K = 391, its hard-decision error-correction capability
is t = [7, 9, 13, 15]. Let us initialize κ = [0, 0, 0, 0]. Let
TThr = 115 and theoretical decoding error probabilities cal-
culated at the SNR of 5 dB, while η = [4, 2, 0, 2] can
be determined through Algorithm 2 with its intermediate
calculations elaborated as follows. Let us determine η through
Algorithm 3 with the use of the (7, 4) Hamming code as the
covering code. When η = [4, 2, 0, 2], only decoding round-0
can employ the concatenated Chase decoding. It can be further
determined that λ = 0.14 as through (32). Concatenated Chase
decoding can be employed in the round-0. Hence, κ0 = 1.
Therefore, η = [7, 2, 0, 2] and κ = [1, 0, 0, 0].

V. SIMULATION RESULTS

This section presents our simulation results of both the
ECD and the ECCD of GII-BCH codes over the AWGN
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Fig. 4. Comparison between the conventional Chase decoding and the ECD
of GII-BCH codes (m = 6, v = 3, n = 127).

channel using BPSK modulation. They are compared with
the conventional Chase decoding under a similar decoding
computational expenditure. In the following discussions, the
FER is used to evaluate the decoding performances, which
are compared under a similar number of decoding test-vectors.
The coding gains are evaluated at the decoding FER of 10−5.

A. Comparison with the Conventional Chase Decoding

Compared with the conventional Chase decoding, the ECD
prioritizes allocating flipped positions to the decoding rounds
that have an inferior decoding performance.

Fig. 4 compares the conventional Chase decoding and the
ECD of GII-BCH codes. For the two GII codes ([6, 3],
127), one has a dimension of K = 391 and an error-
correction capability of t = [7, 9, 13, 15], while the other has
a dimension of K = 384 and an error-correction capability of
t = [7, 10, 13, 15]. For both of codes, it is set TThr = 40 and
theoretical decoding error probabilities are calculated at the
SNR of 5 dB. We can determine η = [2, 1, 0, 3] through the
ECD, i.e., Algorithm 2. For the conventional Chase decoding,
let η = [2, 2, 1, 0] in the case of K = 391, and η = [1, 3, 1, 1]
in the case of K = 384. This ensures the maximum number
of test-vectors is close to TThr and tb + ηb < tb+1.

Fig. 4 shows that with a similar maximum number of test-
vectors, the ECD can achieve a better performance than the
conventional Chase decoding. In the case of K = 384, the
ECD yields a coding gain of 0.25 dB over the conventional
Chase decoding. In the case of K = 391, it yields a coding
gain of 0.3 dB. This is due to the ECD can better allocate the
flipped positions for different rounds.

B. Comparison between the ECD and the ECCD

Fig. 5 compares the decoding performance of the ECD and
the ECCD for ([4, 2], 63) GII-BCH code with dimension
K = 138 and error-correction capability t = [3, 6, 10]. For the
ECD, theoretical decoding error probabilities are calculated
at the SNR of 4.5 dB. With TThr = 40, Algorithm 2 yields
η = [3, 1, 2] and T = 40. With TThr = 100, Algorithm
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Fig. 5. Comparison between the ECD and the ECCD of the GII-BCH codes
(m = 4, v = 2, n = 63).

2 yields η = [4, 3, 4] and T = 96. The ECCD employs
the (7, 4) Hamming code as the covering code. For the
ECCD, theoretical decoding error probabilities are calculated
at the SNR of 4.5 dB. With TThr = 40, Algorithm 3 yields
η = [3, 1, 2], κ = [0, 0, 0] and T = 40. With TThr = 100,
Algorithm 3 yields η = [4, 3, 4], κ = [0, 0, 0] and T = 96.
For the conventional Chase decoding, let η = [2, 3, 3] in the
case of TThr = 40 and η = [2, 3, 6] in the case of TThr = 96.
In these cases, λ =

Pfb
−P̃fb

Pfb

> 0.1 are not satisfied in any
decoding round. As a result, concatenated Chase decoding is
not applied in the ECCD, and the flipping vector η in the
ECCD is the same as in the ECD. Consequently, the ECD and
the ECCD exhibit the same decoding performance. In general,
when code length is short, performance gain of concatenate
Chase decoding is not significant. In case of TThr = 40, the
ECD and the ECCD yield a coding gain of 0.28 dB over
the conventional Chase decoding. In case of TThr = 100, the
ECD and the ECCD yield a coding gain of 0.54 dB over the
conventional Chase decoding.

The ECCD can further enhance the error-correction perfor-
mance over the ECD for GII-BCH codes in some cases. Fig.
6 compares the ECD and the ECCD decoding performance
for the ([6, 3], 127) GII code with dimension K = 391 and
error-correction capability t = [7, 9, 13, 15]. For the ECD,
theoretical decoding error probabilities are calculated at the
SNR of 4.5 dB. With TThr = 500, Algorithm 2 yields η =
[6, 4, 1, 6] and T = 500. With TThr = 1000, Algorithm 2 yields
η = [7, 5, 2, 7] and T = 1000. The ECCD employs the (7, 4)
Hamming code as the covering code. For the ECCD, theoret-
ical decoding error probabilities are calculated at the SNR of
4.5 dB. With TThr = 500, Algorithm 3 yields η = [8, 8, 8, 10],
κ = [1, 1, 1, 1] and T = 480. With TThr = 1000, Algorithm 3
yields η = [9, 9, 9, 11], κ = [1, 1, 1, 1] and T = 960. For the
conventional Chase decoding, let η = [1, 3, 1, 9] in the case of
TThr = 552, η = [1, 3, 1, 10] in the case of TThr = 1064. For
the conventional Chase decoding, as the number of test-vectors
increases, the decoding performance does not improve. In this
case, the error probability of decoding round-3 is negligible.
Therefore, continuing to allocate flipped positions to decoding
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Fig. 6. Comparison between the ECD and the ECCD of the GII-BCH codes
(m = 6, v = 3, n = 127).
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round-3 cannot yield a coding gain. In contrast, both the ECD
and the ECCD can improve the error-correction performance
without extra complexity cost. The ECCD outperforms the
ECD. In the case of TThr = 500, the ECD yields a coding
gain of 0.59 dB over the conventional Chase decoding. The
ECCD further yields a coding gain of 0.19 dB over the ECD.
A similar improvement can also be observed in the case of
TThr = 1000. However, this is only a code of length 762 bits,
incapable of achieving capacity. The soft-decision decoding
performances of the codes still fall apart from the theoretical
limits.

C. Decoding Performance with Different TThr

Both the ECD and ECCD performance can be improved by
increasing the maximum number of test-vectors, as controlled
by TThr. Fig. 7 shows the decoding performance of different
TThr for ECD of the ([6, 3], 127) GII-BCH code, where
K = 391 and t = [7, 9, 13, 15]. It can be observed that as
TThr increases, substantial decoding performance gains can be

achieved. However, this is also at the cost of the decoding
complexity that increases proportionally to TThr.

VI. CONCLUSION

This paper proposes a new theoretical decoding performance
characterization for Chase decoding of BCH codes and further
extends it for concatenated Chase decoding of the codes.
Our theoretical characterizations can match well with the
simulation results. Based on this, the theoretical decoding
performance characterization of concatenated Chase decoding
of GII-BCH codes has been presented. This paper proposes the
ECD and the ECCD of GII-BCH codes. They are developed
based on our theoretical characterization of Chase decoding
performances of the codes. Both the ECD and ECCD can
identify the decoding rounds that are more likely to declare a
decoding failure and prioritize allocating the flipped positions
to those rounds. Our simulation results have shown that, for the
GII-BCH codes, both the ECD and the ECCD outperform the
conventional Chase decoding with a similar maximum number
of test-vectors.
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